Share

Get This


Get this widget!

Selamat datang para kawan semua, Mudah-mudahan dengan adanya web ini dapat bermanfaat

Pages

Selasa, 06 Mei 2014

Pengunaan Elektrolisis

Elektrolisis banyak digunakan dalam bidang industri, di antaranya pada pembuatan beberapa bahan kimia, pemurnian logam dan penyepuhan.
1. Pembuatan Beberapa Bahan Kimia
Beberapa bahan kimia seperti logam alkali dan alkali tanah aluminium, gas hidrogen, gas oksigen, gas klorin, dan natrium hidroksida dibuat secara elektrolisis. Contoh: Pembuatan logam natrium dengan mengelektrolisis lelehan NaCl yang dicampur dengan CaCl2

Read Full

Senin, 05 Mei 2014

IKATAN KIMIA

Ikatan kimia merupakan sebuah proses fisika yang bertanggungung jawab dalam gaya interaksi tarik menarik antara dua atom atau molekul yang menyebabkan suatu senyawa diatomik atau poliatomik menjadi stabil. Secara umum, ikatan kimia dapat digolongkan menjadi dua jenis, yaitu:
A. Ikatan antar atom:
1. Ikatan ion = heteropolar
Ikatan ionik adalah sebuah gaya elektrostatik yang mempersatukan ion-ion dalam suatu senyawa ionik. Ion-ion yang diikat oleh ikatan kimia ini terdiri dari ka2tion dan juga anion. Kation terbentuk dari unsur-unsur yang memiliki energi ionisasi rendah dan biasanya terdiri dari logam-logam alkali dan alkali tanah. Sementara itu, anion cenderung terbentuk dari unsur-unsur yang memiliki afinitas elektron tinggi, dalam hal ini unsur-unsur golongan halogen dan oksigen. Oleh karena itu, dapat dikatakan bahwa ikatan ion sangat dipengaruhi oleh besarnya beda keelektronegatifan dari atom-atom pembentuk senyawa tersebut. Semakin besar beda keelektronegatifannya, maka ikatan ionik yang dihasilkan akan semakin kuat. Ikatan ionik tergolong ikatan kuat, dalam hal ini memiliki energi ikatan yang kuat sebagai akibat dari perbedaan keelektronegatifan ion penyusunnya.
Pembentukan ikatan ionik dilakukan dengan cara transfer elektron. Dalam hal ini, kation terionisasi dan melepaskan sejumlah elektron hingga mencapai jumlah oktet yang disyaratkan dalam aturan Lewis. Selanjutnya elektron yang dilepaskan ini akan diterima oleh anion hingga mencapai jumlah oktet. Proses transfer elektron ini akan menghasilkan suatu ikatan ionik yang mempersatukan ion anion dan kation.
Sifat-Sifat ikatan ionik adalah:
        a. Bersifat polar sehingga larut dalam pelarut polar
        b. Memiliki titik leleh yang tinggi
        c. Baik larutan maupun lelehannya bersifat elektrolit
2. Ikatan kovalen = homopolar
Ikatan kovalen merupakan ikatan kimia yang terbentuk dari pemakaian elektron bersama oleh atom-atom pembentuk ikatan. Ikatan kovalen biasanya terbentuk dari unsur-unsur non logam. Dalam ikatan kovalen, setiap elektron dalam pasangan tertarik ke dalam nukleus kedua atom. Tarik menarik elektron inilah yang menyebabkan kedua atom terikat bersama.
Ikatan kovalen terjadi ketika masing-masing atom dalam ikatan tidak mampu memenuhi aturan oktet, dengan pemakaian elektron bersama dalam ikatan kovalen, masing-masing atom memenuhi jumlah oktetnya. Hal ini mendapat pengecualian untuk atom H yang menyesuaikan diri dengan konfigurasi atom dari He (2ē valensi) untuk mencapai tingkat kestabilannya. Selain itu, elektron-elektron yang tidak terlibat dalam ikatan kovalen disebut elektron bebas. Elektron bebas ini berpengaruh dalam menentukan bentuk dan geometri molekul.
Ada beberapa jenis ikatan kovalen yang semuanya bergantung pada jumlah pasangan elektron yang terlibat dalam ikatan kovalen. Ikatan tunggal merupakan ikatan kovalen yang terbentuk 1 pasangan elektron. Ikatan rangkap 2 merupakan ikatan kovalen yang terbentuk dari dua pasangan elektron, beitu juga dengan ikatan rangkap 3 yang terdiri dari 3 pasangan elektron. Ikatan rangkap memiliki panjang ikatan yang lebih pendek daripada ikatan tunggal. Selain itu terdapat juga bermacam-macam jenis ikatan kovalen lain seperti ikatan sigma, pi, delta, dan lain-lain.
Senyawa kovalen dapat dibagi mejadi senyawa kovalen polar dan non polar. Pada senyawa kovalen polar, atom-atom pembentuknya mempunyai gaya tarik yang tidak sama terhadap elektron pasangan persekutuannya. Hal ini terjadi karena beda keelektronegatifan antara atom-atom penyusunnya. Akibatnya terjadi pemisahan kutub positif dan negatif. Sementara itu pada senyawa kovalen non-polar titik muatan negatif elekton persekutuan berhimpit karena beda keelektronegatifan yang kecil atau tidak ada.
image
Gambar Ikatan Kovalen pada metana
3. Ikatan kovalen koordinasi = semipolar
Ikatan kovalen koordinat merupakan ikatan kimia yang terjadi apabila pasangan elektron bersama yang dipakai oleh kedua atom disumbangkan oleh sala satu atom saja. Sementara itu atom yang lain hanya berfungsi sebagai penerima elektron berpasangan saja.
Syarat-syarat terbentuknya ikatan kovalen koordinat:
  1. Salah satu atom memiliki pasangan elektron bebas
  2. Atom yang lainnya memiliki orbital kosong
Susunan ikatan kovalen koordinat sepintas mirip dengan ikatan ion, namun kedua ikatan ini berbeda oleh karena beda keelektronegatifan yang kecil pada ikatan kovalen koordinat sehingga menghasilkan ikatan yang cenderung mirip kovalen.
4. Ikatan Logam
Ikatan logam merupakan salah satu ciri khusus dari logam, pada ikatan logam ini elektron tidak hanya menjadi miliki satu atau dua atom saja, melainkan menjadi milik dari semua atom yang ada dalam ikatan logam tersebut. Elektron-elektron dapat terdelokalisasi sehingga dapat bergerak bebas dalam awan elektron yang mengelilingi atom-atom logam. Akibat dari elektron yang dapat bergerak bebas ini adalah sifat logam yang dapat menghantarkan listrik dengan mudah. Ikatan logam ini hanya ditemui pada ikatan yang seluruhnya terdiri dari atom unsur-unsur logam semata.
B. Ikatan antar molekul
1. Ikatan hidrogen
Ikatan hidrogen merupakan gaya tarik menarik antara atom H dengan atom lain yang mempunyai keelektronegatifan besar pada satu molekul dari senyawa yang sama. Ikatan hidrogen merupakan ikatan yang paling kuat dibandingkan dengan ikatan antar molekul lain, namun ikatan ini masih lebih lemah dibandingkan dengan ikatan kovalen maupun ikatan ion.
Ikatan hidrogen ini terjadi pada ikatan antara atom H dengan atom N, O, dan F yang memiliki pasangan elektron bebas. Hidrogen dari molekul lain akan bereaksi dengan pasangan elektron bebas ini membentuk suatu ikatan hidrogen dengan besar ikatan bervariasi. Kekuatan ikatan hidrogen ini dipengaruhi oleh beda keelektronegatifan dari atom-atom penyusunnya. Semakin besar perbedaannya semakin besar pula ikatan hidrogen yang dibentuknya.
Kekuatan ikatan hidrogen ini akan mempengaruhi titik didih dari senyawa tersebut. Semakin besar perbedaan keelektronegatifannya maka akan semakin besar titik didih dari senyawa tersebut. Namun, terdapat pengecualian untuk H2O yang memiliki dua ikatan hidrogen tiap molekulnya. Akibatnya, titik didihnya paling besar dibanding senyawa dengan ikatan hidrogen lain, bahkan lebih tinggi dari HF yang memiliki beda keelektronegatifan terbesar.
2. Ikatan van der walls
Gaya Van Der Walls dahulu dipakai untuk menunjukan semua jenis gaya tarik menarik antar molekul. Namun kini merujuk pada gaya-gaya yang timbul dari polarisasi molekul menjadi dipol seketika. Ikatan ini merupakan jenis ikatan antar molekul yang terlemah, namun sering dijumpai diantara semua zat kimia terutama gas. Pada saat tertentu, molekul-molekul dapat berada dalam fase dipol seketika ketika salah satu muatan negatif berada di sisi tertentu. Dalam keadaa dipol ini, molekul dapat menarik atau menolak elektron lain dan menyebabkan atom lain menjadi dipol. Gaya tarik menarik yang muncul sesaat ini merupakan gaya Van der Walls.

Animasi Flash Proses Pembentukan Ikatan Kovalen

Silahkan diunduh

1. HF
2. NH3
3. NF3
3. O2
4. CO2
5. N2

Read Full

Larutan penyangga

1. Larutan Penyangga





Larutan penyangga atau larutan buffer adalah : Larutan yang mempunyai pH tetap dan mampu menahan perubahan pH jika ditambah sedikit asam atau basa. Secara umum larutan penyangga dapat dibuat dengan mencampurkan asam lemah dengan basa konjugasinya (garam dari asam lemah tersebut) atau basa lemah dengan asam konjugasinya (garam dari basa lemah tersebut). Sifat larutan yang terbentuk berbeda dari
komponen-komponen pembentuknya.
Contoh larutan penyangga :
a. Campuran CH3COOH dengan CH3COONa
b. Campuran NH4OH dengan NH4Cl
2. pH Larutan Penyangga
....a. Larutan penyangga dari asam lemah dan basa konjugasinya ( Buffer Asam )
Rumus : [ H+ ] =Ka.na/nbk...........................
nbk = jumlah mol basa konjugasi
..... .....na = jumlah mol asam lemah .......... Ka = tetapan ionisasi asam lemah
b. Larutan penyangga dari basa lemah dan asam konjugasinya ( Buffer Basa)
......Rumus : [OH- ] = Kb.nb/nak.................................
............nak = jumlah mol asam konjugasi . ..........Kb = tetapan ionisasi basa lemah ............ nb = jumlah mol basa lemah
c. Larutan penyangga dari asam lemah dan basa konjugasinya ( Buffer Asam )
...Rumus : [ H+ ] = Ka.na/nbk.....................
... nbk = jumlah mol basa konjugasi
......... na = jumlah mol asam lemah .. .......Ka = tetapan ionisasi asam lemah
d. Larutan penyangga dari basa lemah dan asam konjugasinya ( Buffer Basa )
... Rumus : [OH- ] = Kb.nb/nak.......................
...nak = jumlah mol asam konjugasi
... ......nb = jumlah mol basa lemah ... ......Kb = tetapan ionisasi basa lemah
Rumus Pengenceran : V1xM1 = V2xM2
3. Fungsi Larutan Penyangga
a. Dalam tubuh makhluk hidup
Dalam tubuh manusia terdapat sistem penyangga yang berfungsi untuk mempertahankan harga pH.
Contoh :
- Dalam darah terdapat sistem penyangga antara lain asam bikarbonat, hemoglobin, dan oksihemoglobin. Karbon dioksida terbentuk secara metabolik dalam jaringan kemudian diangkut oleh darah sebagai ion bikarbonat.
- Dalam sel darah merah terdapat sistem penyangga sebagai berikut :
-H3PO4- + H2O --->HPO42- + H3O+
b. Dalam kehidupan sehari-hari
Larutan penyangga dalam kehidupan sehari-hari digunakan dalam berbagai bidang seperti biokimia, bakteriologi, kimia analisis, industri farmasi, juga dalam fotografi dan zat warna.
Dalam industri farmasi, larutan penyangga digunakan pada pembuatan obat- obatan agar obat tersebut mempunyai pH tertentu dan tidak berubah.
LATIHAN
1. Tentukan pH larutan jika 800 ml larutan CH3COOH 0,1M dicampur dengan 400ml larutan CH3COONa 0,1M (Ka CH3COOH = 1,8x10-5) !
2. Tentukan pH larutan apabila 400 ml larutan NH4OH 0,5M dicampur dengan 100 ml larutan NH4Cl 0,5M ( Kb NH4OH = 1,8x10-5)
3. Sebanyak 50 ml larutan yang terdiri dari CH3COOH 1M dan CH3COONa 1M ditambahkan larutan HCl 1M sebanyak iml. Tentukan pH larutan setelah penambahan HCl 1M ! ( Ka = 1,8 x 10-5 )
4. Sebanyak 50 ml larutan yang terdiri dari CH3COOH 1M dan CH3COONa 1M ditambah 50 ml air. Tentukan pH larutan setelah pengenceran !
5. Jelaskan fungsi larutan penyangga dalam tubuh makhluk hidup dan beri contohnya !
Kunci Jawaban :
1. mol CH3COOH = 800 x 0,1 = 80 mmol
mol CH3COONa = 400 x 0,1 = 40 mmol
[ H+ ] = Ka .na/nbk
= 1,8 x 10-5 x( 80/40)
= 3,6 x 10 -5
pH = -log 3,6 x 10 -5
= 5 – log 3,2

2. mol NH3 = 400 x 0,5 = 200 mmol
mol NH4Cl = 100 x 0,5 = 50 mmol
[OH-] = 1,8 x10 -5 x(200/50)
= 7,2 x 10 -5
pOH = - log 7,2 x 10 -5
= 5 – log 7,2
pH = 14 – (5-log 7,2)
= 9 + log 7,2

3. mol CH3COOH = 50 x 1 = 50 mmol
mol CH3COONa = 50 x 1 = 50 mmol
mol HCl = 1 x 1 = 1 mmol
CH3COONa + HCl ----> CH3COOH + NaCl
Mula-mula :.................. 50 mmol...........1 mmol.......50 mmol -
Bereaksi : ...................... 1 mmol...........1 mmol......1 mmol........1 mmol
____________________________________________________________ -
Sisa.........:.................. 49 mmol ............. -..............51 mmol.......1 mmol
Jadi pH = -log (1,8 x 10-5 x 51/49)
= -log 1,87 x 10-5 = 5 – log 1,87
4. Pengenceran CH3COOH : V1.M1 = V2.M
50x1 = 100xM2
M2 = 0,5
Pengenceran CH3COONa : V1.M1 = V2.M2
50x1 = 100xM2
M2 = 0,5
Read Full

Kenaikan titik didih (ΔTb) dan penurunan titik beku (ΔTf)

Setiap zat cair pada suhu tertentu mempunyai tekanan uap jenuh tertentu dan mempunyai harga yang tetap. Zat cair akan mendidih dalam keadaan terbuka jikatekanan uap jenuhnya sama dengan tekanan atmosfer. Pada saat udara mempunyai tekanan 1 atm, air mendidih pada suhu 100°C, tetapi jika dalam zat cair itu dilarutkan suatu zat, maka tekanan uap jenuh air itu akan berkurang. Penurunan tekanan uap jenuh larutan yang lebih rendah dibanding tekanan uap jenuh pelarut murni menyebabkan titik didih larutan lebih tinggi daripada titik didih pelarut murni.


Diagram penurunan tekanan uap, titik beku, dan kenaikan titik didih

Selisih antara titik didih suatu larutan dengan titik didih pelarut murni disebut kenaikan titik didih larutan (ΔTb).

ΔTb = Tb larutan −Tb pelarut murni

Berdasarkan gambar di atas, dapat dilihat bahwa tekanan uap larutan lebih rendah daripada tekanan uap pelarut murni. Hal ini menyebabkan penurunan titik beku
larutan lebih rendah dibandingkan dengan penurunan titik beku pelarut murni. Selisih temperatur titik beku larutan dengan titik beku pelarut murni disebut penurunan titik
beku (ΔTf).

ΔTf = Tf pelarut murni −Tf larutan

Menurut Hukum Backman dan Raoult bahwa penurunan titik beku dan kenaikan titik didih berbanding langsung dengan molalitas yang terlarut di dalamnya.
Hukum tersebut dapat dirumuskan sebagai berikut.

ΔTb = m×Kf

ΔTf = m×Kf

Keterangan:
ΔTb = kenaikan titik didih
Kb = tetapan kenaikan titik didih molal
ΔTf = penurunan titik beku
Kf = tetapan titik beku molal
m = molalitas

Syarat Hukum Backman dan Raoult adalah sebagai berikut.
a. Rumus di atas berlaku untuk larutan nonelektrolit.
b. ΔTb tidak berlaku untuk larutan yang mudah menguap.
c. Hanya berlaku untuk larutan yang sangat encer, pada
larutan yang pekat terdapat penyimpangan.

Contoh soal:
1. Tentukan titik didih dan titik beku larutan berikut!
a. urea (CO(NH2)2) 30 gram dalam 500 gram air.
b. glukosa (C6H12O6) 18 gram dalam 10 gram air.
(Kb air = 0,52 dan Kf air = 1,86 °C/m)
Jawab:
a. ΔTb = m × Kb
= 30/60 gram× 1.000/500 gram× 0,52 °C/m

= 0,5 gram × 2 gram × 0,52 °C/m
= 0,52 °C
Titik didih larutan = 100 °C + 0,52 °C =
100,52 °C.

ΔTb = m × Kb
= 30/60gram x 1.000/500 gram x 1,86 °C/m
= 0,5 gram × 2 gram × 1,86 °C/m
= 1,86 °C

b. ΔTb = m × Kb
= 18/180 gram x 1.000/10gram x 0,52 °C/m
= 0,1 gram × 100 gram × 0,52 °C/m
= 0,52 °C
Titik didih larutan = 100 °C + 5,2 °C = 105,2 °C.

ΔTf = m × Kf
= 18/180 gram x 1.000/10 gram x 1,86 °C/m
= 0,1 gram × 100 gram × 1,86 °C/m
= 10 gram × 1,86 °C
= 18,6 °C
Titik beku larutan = 0 °C – 18,6 °C = –18,6 °C.

2. Titik beku larutan 64 gram naftalena dalam 100 gram benzena adalah 2,91 °C. Jika titik beku benzena 5,46°C dan tetapan titik beku molal benzena 5,1 °C, maka
tentukan massa molekul relatif naftalena!
Jawab:
ΔTf = m × Kf
ΔTf = massa benzena/Mr x 1.000/p x Kf
ΔTf = 5,46 °C – 2,91 °C = 2,55 °C
2,55 = 6,4 gram/Mr× 1.000 gram/100 × 5,1 °C
Mr=(6,4 x 1.000 x 5,1 °C ):(2,55 x 100 )
Mr = 128

3. Berapa berat gula yang harus dilarutkan untuk menaikkan titik didih 250 mL air menjadi 100,1°C pada tekanan 1 atm, jika Mr gula = 342 dan Kb = 0,5 °C/m?

Jawab:
ΔTb = massa gula/Mr × 1.000/p × Kb
ΔTb = 100,1°C – 100°C
= 0,1°C
0,1 = massa gula/342 × 1.000mL/250 × 0,5 °C/m
0,1 °C = massa gula/342 x 4 mLx 0,5 °C/m
0,1 °C = massa gula/342 x 2
0,1 °C × 342 = massa gula × 2
massa gula =34,2/2 = 17,1 gram
Jadi, berat gula adalah 17,1 gram
Read Full

Bentuk Molekul

 Teori Domain Elektron

● Bentuk molekul tergantung pada susunan ruang pasangan elektron ikatan (PEI
   dan pasangan elektron bebas (PEB) atom pusat dalam molekul. Dapat dijelaskan
   dengan teori tolakan pasangan elektron kulit valensi atau teori VSEPR (Valence
   Shell Electron Pair Repultion)
● Molekul kovalen terdapat pasangan-pasangan elektron baik PEI maupun PEB.
Karena pasangan-pasangan elektron mempunyai muatan sejenis, maka tolak-
menolak antarpasangan elektron. Tolakan (PEB - PEB) > tolakan (PEB - PEI) >
tolakan (PEI - PEI)
● Adanya gaya tolak-menolak menyebabkan atom-atom yang berikatan
membentuk struktur ruang yang tertentu dari suatu molekul dengan demikian
bentuk molekul dipengaruhi oleh banyaknya PEI maupun PEB yang dimiliki pada
atom pusat.
● Bentuk molekul ditentukan oleh pasangan elektron ikatannya
Contoh molekul CH4 memiliki 4 PEI


2. Merumuskan Tipe Molekul
1) Atom pusat dilambangkan dengan A
2) Domain elektron ikatan dilambangkan dengan X
3) Domain elektron bebas dinyatakan dengan E

Tabel tipe molekul
Jumlah Pasangan Elektron Ikatan (X)
Jumlah Pasangan Elektron Bebas (E)
Rumus (AXnEm)
Bentuk Molekul
Contoh
2
0
AX2
Linear
CO2
3
0
AX3
Trigonal planar
BCl3
2
1
AX2E
Bengkok
SO2
4
0
AX4
Tetrahedron
CH4
3
1
AX3E
Piramida trigonal
NH3
2
2
AX2E2
Planar bentuk V
H2O
5
0
AX5
Bipiramida trigonal
PCl5
4
1
AX4E
Bipiramida trigonal
SF4
3
2
AX3E2
Planar bentuk T
IF3
2
3
AX2E3
Linear
XeF2
6
0
AX6
Oktahedron
SF6
5
1
AX5E
Piramida sisiempat
IF5
4
2
AX4E2
Sisiempat datar
XeF4

Dengan menggunakan teori VSEPR maka kita dapat meramalkan bentuk geometri suatu molekul. Dalam artikel ini maka akan di contohkan menentukan bentuk geometri molekul XeF2, XeF4, dan XeF6. Diantara molekul-molekul tersebut ada yang memiliki pasangan elektron bebas dan ada yang tidak, jadi molekul-molekul tersebut adalah contoh yang bagus untuk lebih memahami teori VSEPR.
Pertama kita harus mementukan struktur lewis masing-masing molekul. Xe memiliki jumlah elektron valensi 8 sedangkan F elektron valensinya adalah 7.(lihat gambar dibawah)


Struktur Lewis XeF2 seperti gambar sebelah kiri, dua elektron Xe masing-masing diapakai untuk berikatan secara kovalen dengan 2 atom F sehingga meninggalkan 3 pasangan elektron bebas pada atom pusat Xe. Hal yang sama terjadi pada molekul XeF4 dimana 4 elektron Xe dipakai untuk berikatan dengan 4 elektron dari 4 atom F, sehingga meninggalkan 2 pasangan elektron bebas pada atom pusat Xe.

Lihat gambar diatas XeF2 memiliki 2 pasangan elekktron terikat (PET) dan 3 pasangan elektron bebas (PEB) jadi total ada 5 pasangan elektron yang terdapat pada XeF2, hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF2 adalah trigonal bipiramid. Karena terdapat 3 PEB maka PEB ini masing masing akan menempati posisi ekuatorial pada kerangka trigonal bipiramid, sedangkan PET akan menempati posisi aksial yaitu pada bagian atas dan bawah. Posisi inilah posisi yang stabil apabila terdapat atom dengan 2 PET dan 3 PEB sehingga menghasilkan bentuk molekul linear. Jadi bentul molekul XeF2 adalah linier.(lihat gambar dibawah).

Lihat gambar strutur lewis XeF4 memiliki 4 pasangan elekktron terikat (PET) dan 2 pasangan elektron bebas (PEB) jadi total ada 6 pasangan elektron yang terdapat pada XeF4, hal ini menandakan bahwa geometri molekul atau kerangka dasar molekul XeF4 adalah oktahedral. Karena terdapat 2 PEB maka PEB ini masing masing akan menempati posisi aksial pada kerangka oktahedral, sedangkan PET akan menempati posisi ekuatorial. Posisi inilah posisi yang stabil apabila terdapat atom dengan 4 PET dan 2 PEB sehingga menghasilkan bentuk molekul yang disebut segiempat planar. Jadi bentul molekul XeF2 adalah segiempat planar.(lihat gambar
dibawah).

Bentuk molekul akan sama dengan susunan ruang elektron yang ada pada atom pusat jika tidak pasangan elektron bebas.
Perhatikan gambar berbagai bentuk molekul berikut ini !
X : atom pusat
E : pasangan elektron bebas


Read Full

Kegunaan Sel Volta

Dalam kehidupan sehari-hari, arus listrik yang dihasilkan dari suatu reaksi kimia dalam sel volta banyak kegunaannya, seperti untuk radio, kalkulator, televisi, kendaraan bermotor, dan lain-lain.Sel volta dalam kehidupan sehari-hari ada dalam bentuk berikut. 

a. Sel Baterai
1) Baterai Biasa
Baterai yang sering kita gunakan disebut juga sel kering atau sel Lecanche. Dikatakan sel kering karena jumlah air yang dipakai sedikit (dibatasi). Sel ini terdiri atas:
Anode : Logam seng (Zn) yang dipakai sebagai wadah.
Katode : Batang karbon (tidak aktif).
Elektrolit : Campuran berupa pasta yang terdiri dari MnO2,NH4Cl, dan sedikit air.
Reaksi:
Anode : Zn(s) --->Zn2+(aq) + 2 e
Katode :2 MnO2(s) + 2 NH4+(aq) + 2 e–--->Mn2O3(s) + 2 NH3(g) + H2O(l)




2) Baterai Alkaline
Pada baterai alkaline dapat dihasilkan energi dua kali lebih besar dibanding baterai biasa. Sel ini terdiri atas:
Anode : Logam seng (Zn) yang sama seperti baterai biasa digunakan sebagai wadah.
Katode : Oksida mangan (MnO2 ).
Elektrolit : Kalium hidroksida (KOH).
Reaksi:
Anode : Zn(s)---> Zn2+(aq) + 2 e
Katode : 2 MnO2+ H2O + 2 e--->Mn2O3 + 2 OH
Ion Zn2+ bereaksi dengan OH membentuk Zn(OH) .



b. Sel Aki
Sel aki atau accu merupakan contoh sel volta yang bersifat reversibel, di mana hasil reaksi dapat diubah kembali menjadi zat semula. Pada sel aki jika sudah lemah dapat diisi ulang, sedangkan
pada sel baterai tidak bisa.
Sel ini terdiri atas:
Anode : Lempeng logam timbal (Pb).
Katode : Lempeng logam oksida timbal (PbO2).
Ektrolit : Larutan asam sulfat (H2SO4) encer.
Reaksi pengosongan aki:
Anode : Pb(s) ++ H2SO4 (aq) ---> PbSO4(s) + H+(aq) + 2 e–
Katode :PbO2(s) + SO4-2 (aq)+ 3 H+(aq) + 2 e– --->PbSO4(aq) + 2 H2O
______________________________________________________________+
Reaksi lengkapnya:Pb(s) + PbO2(s) + 2SO4-2 (aq) + 2 H+(aq)---> 2 PbSO4(s) + 2 H2O (l)
Ketika sel ini menghasilkan arus listrik, anode Pb dan katode PbO2
berubah membentuk PbSO4. Ion H+ dari H2SO4 berubah membentuk H2O sehingga konsentrasi H2SO4 akan berkurang. Kemudian sel aki dapat diisi/disetrum kembali, sehingga konsentrasi asam sulfat kembali seperti semula. Proses ini nanti merupakan contoh dalam sel elektrolisis.


Sumber: Infinitecables
Read Full

Minggu, 04 Mei 2014

Unsur-unsur Golongan IIA


A.    Sifat-sifat Umum Golongan II A

Logam alkali tanah terdiri dari 6 unsur yang terdapat di golongan IIA. Yang termasuk ke dalam golongan II A yaitu : Berilium (Be), Magnesium (Mg), Calcium (Ca), Stronsium (Sr), Barium (Ba), dan Radium (Ra). Di sebut logam karena memiliki sifat-sifat seperti logam. Disebut alkali karena mempunyai sifat alkalin atau basa jika direaksikan dengan air. Dan istilah tanah karena oksidasinya sukar larut dalam air dan tetap stabil pada temperatur tinggi, dan banyak ditemukan dalam bebatuan di kerak bumi.  Adapun elemen dalam golongan alkali tanah adalah logam yang mengilap, warna putih keperakan. Logam alkali tanah yang tinggi dalam rangkaian reaktivitas logam, tapi tidak setinggi logam alkali golongan 1A. adapun sifat-sifat umum golongan alkali tanah antara lain :
1.      Alkali tanah merupakan unsur-unsur logam reaktif oleh karena itu di alam tidak terdapat dalam keadaan bebas.
2.      Pada suhu biasa merupakan zat padat, berwarna putih mengkilap seperti perak.
3.      Alkali tanah merupakan logam bivalen yang memiliki 2 elektron pada kulit terluarya, oleh karena itu bilangan oksidasi unsur alkali dalam senyawa adalah + 2
4.      Unsur-unsur alkali tanah sangat reaktif.
5.      Senyawanya bersifat ionik dan tidak berwarna.
6.      Dapat membentuk garam dengan unsur elektronegatif
7.      Basa yang berasal dari unsur-unsur alkali tanah adalah basa kuat, kecuali Mg (OH)2. Basa lemah dan Be (OH)2  basa atmosfer artinya disamping dapat bereaksi dengan asam juga dapat bereaksi


dengan basa kuat. Sifat basa logam alkali tanah makin ke bawah makin kuat.
8.      Logam alkali tanah kurang reaktif dibandingkan logam alkali
9.      Logam alkali tanah bereaksi dengan air kecuali Berilium.
 2L + 2H2O           L(OH)2 + H2
10.  Alkali tanah + udara             Oksida + Nitrida
11.  Alkali tanah + Halogen              Halida
12.  Halida alkali  tanah mempunyai daya hantar listrik yang baik karena merupakan senyawa ion kecuali halida berilium merupakan senyawa kovalen
13.  Alkali tanah apabila direaksikan dengan asam membentuk garam dam gas hidrogen
Alkali tanah + HCL          LCI2 + H2 
14.  Jari-jari atom dari atas ke bawah pada sistem periodik unsur meningkat
15.  Terjadi penurunan energi ionisasi dan keelekrronegatifan dari atas ke bawah
16.  Titik leleh dan titik didihnya menurun dari atas ke bawah
17.  Kelarutan alkali tanah lebih kecil dibandingkan degngan alkali

B.     Mengenal unsur dari setiap golongan II A

1.      Berilium (Be)
a)              Sejarah
(Yunani: beryllos, beryl; juga disebut Glucinium atau Glucinum, kata dari Yunani glykys, yang berarti manis). Ditemukan sebagai oksida oleh Vauquelin dalam beryl dan di zamrud di tahun 1798. Logam ini diisolasi pada tahun 1828 oleh Wohler dan Bussy (mereka tidak berkolaborasi) dengan reaksi kimia kalium atas berilium klorida.


b)             Sumber-sumber
Berilium ditemukan di dalam 30 jenis mineral, yang paling penting di antaranya adalah bertandite, beryl, chrysoberyl, dan phenacite. Beryl dan bertrandite merupakan sumber komersil yang penting untuk unsur berilium dan senyawa-senyawanya. Kebanyakan metal ini sekarang dipersiapkan dengan cara mereduksi berilium florida oleh logam magnesium. Logam berilium baru tersedia untuk industri pada tahun 1957.
c)              Sifat Berilium
Logam ini berwarna seperti baja, keabu-abuan. Ia memiliki sifat yang sangat menarik. Sebagai salah satu logam yang sangat ringan, unsur ini memiliki salah satu titik cair yang tinggi di antara logam-logam ringan. Modulus elastisitasnya sekitar sepertiga lebih besar dibanding baja. Berilium memiliki konduktivitas kalor yang sangat bagus, non-magnetik, dan tahan serangan konsentrasi asam nitrat. Resistensi terhadap asam maupun basa dan tahan terhadap korosi, berilium merupakan reduktor yang kuat, apabila dibakar menghasilkan cahaya yang sangat terang, massa atom relatif 9,012, titik lelehnya 12800C, titik didihnya 29700C, Rapatan (Densitas) 2970 g/cm3, jari-jari atom 1,11 A Unsur ini juga memiliki sifat transparan (permeability) terhadap sinar X dan jika dibombardir oleh partikel-partikel alpha, seperti dari radium atau polonium, netron-netron terproduksi dalam jumlah sekitar 30 netron/sejuta partikel alpha.
d)            Kegunaan
1.      Berilium digunakan untuk memadukan logam agar lebih kuat, akan tetapi bermasa lebih ringan. Biasanya paduan ini digunakan pada kemudi pesawat jet.
2.      Berilium digunakan pada kaca dari sinar X.
3.      Berilium digunakan untuk mengontrol reaksi fisi pada reaktor nuklir
4.      Campuran berilium dan tembaga banyak dipakai pada alat listrik, maka  Berilium sangat penting sebagai komponen televisi.
e)      Penanganan
Berilium dan garam-garamnya sangat beracun dan harus ditangani secara sangat hati-hati. Berilium dan senyawa-senyawanya tidak boleh dirasa dengan lidah untuk membuktikan rasa manis alami logam ini. Logam ini, dan campuran logamnya beserta garam-garamnya dapat ditangani dengan baik jika peraturan penanganan mereka dipatuhi. Jangan pernah menangani berilium sebelum memahami cara-cara menangani berilium dengan benar.

2.      Magnesium (Mg)
a)      Sejarah
(Magnesia, daerah di Thessaly). Senyawa-senyawa magnesium telah lama diketahui. Black telah mengenal magnesium sebagai elemen di tahun 1755. Davy berhasil mengisolasikannya di tahun 1808 dan Busy mempersiapkannya dalam bentuk yang koheren di tahun 1831. Magnesium merupakan elemen terbanyak kedelepan di kerak bumi. Ia tidak muncul tersendiri, tapi selalu ditemukan dalam jumlah deposit yang banyak dalam bentukmagnesite, dolomite dan mineral-mineral lainnya.
b)      Sifat Magnesium
Magnesium adalah unsur kimia dalam tabel periodik merupakan elemen terbanyak kedelapan yang membentuk 2% berat kulit bumi, serta merupakan unsur terlarut ketiga terbanyak pada air laut”. Magnesium adalah logam yang kuat, ringan dan tahan korosi, terdapat melimpah di alam dalam bentuk bebatuan. berwarna putih keperakan dan akan menjadi kusam jika dibiarkan pada udara. Dalam bentuk serbuk, logam ini sangat reaktif dan bisa terbakar dengan nyala putih apabila udaranya lembab. Rapat massa magnesium adalah 1,738 gram/cm3. Massa atom relatimya adalah 24, dan nomor atomnya 12. Magnesium meleleh pada suhu 111°C.
c)      Sumber-sumber
Logam ini sekarang dihasilkan di AS dengan mengelektrolisis magnesium klorida yang terfusi dari air asin, sumur, dan air laut.
d)     Kegunaan
1.      Magnesium digunakan untuk memberi warna putih terang pada kembang api dan pada lampu Blitz.
2.      Senyawa MgO dapat digunakan untuk melapisi tungku, karena senyawa MgO memiliki titik leleh yang tinggi.
3.      Senyawa Mg(OH)2 digunakan dalam pasta gigi untuk mengurangi asam yang terdapat di mulut dan mencagah terjadinnya kerusakan gigi, sekaligus sebagai pencegah maag.
4.      Mirip dengan Berilium yang membuat campuran logam semakin kuat dan ringan sehingga biasa digunakan pada alat alat rumah tangga.
e)      Penanganan
Kebakaran dapat dengan mudah terjadi, sehingga magnesium harus ditangani secara hati-hati. Terutama jika logam ini dalam keadaan terbelah-belah secara halus. Air tidak boleh digunakan pada magnesium yang terbakar atau kebakaran yang berdasarkan magnesium.

3.       Kalsium (Ca)
a)    Sejarah
(Latin: calx, kapur) Walau kapur telah digunakan oleh orang-orang Romawi di abad kesatu, logam kalsium belum ditemukan sampai tahun 1808. Setelah mempelajari Berzelius dan Pontin berhasil mempersiapkan campuran air raksa dengan kalsium (amalgam) dengan cara mengelektrolisis kapur di dalam air raksa, Davy berhasil mengisolasi unsur ini walau bukan logam kalsium murni
b)   Sifat Kalsium
Kalsium adalah unsur kimia dengan nomor atom 20 dan massa atom 40,08. Berupa logam, dengan titik lebur 842°C dan titik didih 1480° C. Kalsium adalah mineral yang amat penting bagi manusia, antara lain bagi metabolisme tubuh, penghubung antar saraf, kerja jantung, dan pergerakan otot. Sifat kalsium (Ca) adalah logam putih perak, yang agak lunak. Kalsium merupakan salah satu senyawa alkali tanah yang banya kterdapat di alam selain magnesium. Kalsium melebur pada 845°C dan menghasilkan spektrum warna merah bata.
c)    Sumber-sumber
Kalsium adalah logam metalik, unsur kelima terbanyak di kerak bumi. Unsur ini merupakan bahan baku utama dedaunan, tulang belulang, gigi dan kerang dan kulit telur. Kalsium tidak pernah ditemukan di alam tanpa terkombinasi dengan unsur lainnya. Ia banyak terdapat sebagai batu kapur, gipsum, dan fluorite. Apatite merupakanflurofosfat atau klorofosfat kalsium.
d)    kegunaan kalsium (Ca)
1.      Senyawa CaSO4 digunakan untuk membuat Gips yang berfungsi untuk membalut tulang yang patah.
2.      Senyawa CaCO3 biasa digunakan untuk bahan bangunan seperti komponen semen dan cat tembok.Selain itu digunakan untuk membuat kapur tulis dan gelas.
3.      Kalsium Oksida (CaO) dapat mengikat air pada Etanol karena bersifat dehidrator,dapat juga mengeringkan gas dan mengikat Karbondioksida pada cerobong asap.
4.      Ca(OH)2 digunakan sebagai pengatur pH air limbah dan juga sebagai sumber basa yang harganya relatif murah
5.      Kalsium Karbida (CaC2) disaebut juga batu karbit merupakan bahan untuk pembuatan gas asetilena (C2H2) yang digunakan untuk pengelasan.
6.      Kalsium banyak terdapat pada susu dan ikan teri yang berfungsi sebagai pembentuk tulang dan gigi.

4.      Stronsium (Sr)
a)    Sejarah
(Strontian, kota di Skotland). Elemen ini berhasil diisolasi leh Davey dengan cara elektrolisis di tahun 1808, tetapi Adair Crawford di tahun 1790 menemukan mineral baru (strontianite) yang berbeda dengan mineral-mineral barium lainnya.
b)   Sifat  Stronsium
Stronsium adalah unsur kimia dalam tabel periodik yang memiliki simbol Sr dan nomor atomnya 28 serta berat atom 87,62. Stronsium melebur pada 771°C. berada di alam dalam bentuk senyawa,  Strontium lebih lunak dibanding kalsium dan terdekomposisi dalam air secara cepat. Ia tidak menyerap nitrogen dibawah suhu 380 derajat Celcius. Elemen ini harus direndam dalam minyak tanah (kerosene) untuk menghindari oksidasi. Logam strontium yang baru terbelah memiliki warna keperak-perakan, tapi dapat dengan cepat menjadi kuning jika teroksidasi. Logam ini jika terbelah secara halus dapat terbakar di udara secara spontan. Garam-garam strontium memberikan warna yang indah pada lidah api dan digunakan di pertunjukan kembang api dan produksi flares. Strontium alami merupakan campuran dari 4 isotop yang stabil.
c)    Sumber-sumber
Terdapat dalam Stronsianit
d)   Manfaat Dan Kegunaannya
1.       Stronsium dalam senyawa Sr(NO3)2 memberikan warna merah apabila digunakan untuk bahan kembang api.
2.       Stronsium sebagai senyawa karbonat biasa digunakan dalam pembuatan kaca televisi berwarna dan komputer.
3.       Untuk pengoperasian mercusuar yang mengubah energi panas menjadi listrik dalam baterai nuklir RTG (Radiisotop Thermoelectric Generator.

5.      Barium (Ba)
a)    Sejarah
(Yunani, barys, berat) Baryta telah dibedakan dari kapur oleh Scheel di tahun 1774. Unsur ini ditemukan oleh Sir Humphrey Davy di tahun 1808.
b)   Sifat Barium
Barium adalah unsur kimia dalam tabel periodik yang memiliki simbol Ba dan nomor atom 56 serta berat atom 137,34. Barium merupakan unsur metalik, lunak, dan barium murni bewarna perak keputih-putihan seperti timbal Logam ini teroksida dengan mudah dan harus disimpan dalam bensin atau bahan cair lainnya yang tidak mengandung oksigen. Barium terdekomposisi oleh air atau alkohol.
c)    Sumber
Barium ditemukan hanya terkombinasi dengan unsur lainnya, terutama dengan sulfat dan karbonat dan dipersiapkan secara elektrolisis dengan klorida.
d)   Kegunaannya
1.      BaSO4 digunakan untuk memeriksa saluran pencernaan karena mampu menyerap sinar X
2.      BaSO4 digunakan sebagai pewarna pada plastic karena memiliki kerapatan yang tinggi dan warna terang.
3.      Ba(NO3)2 digunakan untuk memberikan warna hijau pada kembang api.

6.      Radium (Ra)
a)      Sejarah
(Latin: radius, sinar). Radium ditemukan pada tahun 1898 oleh Marie Curie dalam pitchblende atauuraninite di Bohemia Utara. Ada sekitar 1 gram radium dalam 7 tonpitchblende. Unsur ini diisolasi oleh Marie Curie dan Debierne di tahun 1911; dengan cara elektrolisis solusi radium klorida murni, yang menggunakan katoda air raksa. Cara lainnya adalah dengan distilasi radium klorida murni di atmosfir hidrogen
b)      Sifat Radium
Radium adalah unsur kimia dalam tabel periodik yang memiliki simbol Ra dan nomor atomnya 88 serta berat atom 226. Radium diproduksi secara komersil sebagai bromida dan klorida. Sangat jarang unsur ini tersendiri tersedia dalam jumlah banyak. Logam murni unsur ini berwarna putih menyala ketika baru saja dipersiapkan, tetapi menjadi hitam jika diekspos ke udara. Kemungkinan besar karena formasi nitrida. Elemen terdekomposisi di dalam air dan lebih reaktif ketimbang barium. Radium memberikan warna merah menyala pada lidah api. Unsur ini memancarkan sinar alpha, beta, dan gamma. Unsur ini bersifat radioaktif, yang kekuatan radioaktifnya akan berupa sulfat. Radium dalam bentuk garam harus disimpan dalam tabung kaca tertutup dan diberi pelindung timah hitam.
c)      Sumber
Pada mulanya, radium diambil dari bijih pitchblende yang ditemukan di Joachimsthal, Bohemia. Pasir carnotite di Colorado juga menghasilkan radium, tetapi bijih yang kaya akan unsur ini ditemukan di Congo (dulunya Republik Zaire) dan Danau Besar (Great Lake) di Kanada. Radium terkandung di dalam mineral uranium dan bisa diambil dari sampah hasil pemrosesan uranium. Deposit uranium yang besar terletak di Ontario, Kanada, negara bagian New Meksiko dan Utah di AS, dan di Australia.
d)     Kegunaan
Radium juga digunakan dalam memproduksi cat yang menyala dengan sendirinya, sumber netron dan dalam kedokteran. Dalam dunia kedokteran, radium digunakan dalam terapi kanker dan penyakit-penyakit lainnya. Beberapa isotop yang baru saja ditemukan seperti 60Co juga digunakan menggantikan radium dalam aplikasi-aplikasi tersebut. Beberapa sumber ini sangat kuat dan yang lainnya sangat aman digunakan. Radium kehilangan sekitar 1% dari aktifitasnya dalam 25 tahun, karena tertransformasikan menjadi unsur-unsur yang lebih ringan. Timbal merupakan hasil akhir disentegrasi radium. Radium harus disimpan di ruangan dengan ventilasi yang baik untuk menghindari pembentukan radon.
e)      Penanganan
Radium, jika tertelan, terhirup ataupun terekspos pada tubuh menjadi sangat berbahaya dan dapat menyebabkan kanker. Batas maksimum untuk 226Ra adalah 7400 becquerel.

Read Full